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Abstract
Kinetics of crystal growth in non-isochemical systems is considered taking into account the
changes in composition of the residual melt during the process. This leads to the formation of
concentration gradients in the vicinity of the new phase. If a component acting as a network
modifier is enriched in the crystalline phase, the melt at the interface is enriched in network
formers and the glass network will turn from floppy to rigid. Consequently, the crystal grows
until a critical concentration is reached, at which the melt locally turns to a rigid one. There is a
critical size of the crystal, above which the growth rate strongly decreases because the network
former concentration at the interface drops below the threshold limit. The problem is solved
numerically and finite differences are used for space and time discretization.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

For nucleation and crystal growth, the chemical composition
and hence the structure of the liquid is decisive. This is of
particular importance for multicomponent systems, i.e. liquids
which have a composition different from that of the nucleus
formed. In highly viscous melts, near the glass transition
temperatures, this leads to a formation of diffusion layers
(diffusion of stress deformation energy as well as diffusion
of chemical components) at the crystal surface. Here, two
cases can be distinguished: (i) the viscosity of the liquid at the
interface is lower than that in the bulk; this leads to an increase
in the crystal growth velocity due to enhanced mobility. If,
however, (ii) the viscosity increases, the interface will act
as a barrier and will notably decelerate the crystal growth
velocity.

Recently a new approach was suggested: the combination
of the percolation theory and the classical nucleation
theory [1–4]. Most of the glass-forming systems are

well described by the continuous-random-network model
of Zachariasen [5]. Finney and Bernal [6] describe the
glass structure by means of Voronoi polyhedra. Gupta and
Cooper [7] used distorted polytypes to describe the structure
of glass-forming melts. The concept of average coordination
number 〈r〉 is an important logical step in this line. According
to Mott [8], the coordination number of covalently bonded
atoms is determined by the number of outer shell electrons.
It can be connected with the constraint counting concepts of
Phillips [9, 10] and Thorpe [11–13]. It was shown in [12] that
the network becomes rigid if the mean coordination of network
formers 〈r〉 exceeds a critical value rc � 2.4.

The main idea of the present article is to simulate
the crystal growth in multicomponent systems with crystal
composition different from that of the ambient phase.
Anticipating, we expect an initial stage of diffusion controlled
growth followed by a second stage of much slower growth due
to the switch from floppy to rigid of the melt in the crystal
vicinity.
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2. Mathematical formulation

We consider a half-line domain 0 < z < ∞ full of material,
which at each time and each point is in one of the following
two states: crystalline and melt. The special point is the
change in the diffusion coefficient caused by the switch of the
liquid network from ‘floppy’ to ‘rigid’ as the concentration of
modifying ions drops below a critical value Ccr. The interface
between the crystal and liquid phase, given by the curve ξ(t),
is denoted by �(t). The region where the crystal grows is
0 < z < ξ(t). We suppose that the concentration of network
modifying components in the crystal is fixed, Cc = 1.

In the following, the dependence of the concentrations
C(z, t) in the melt at the distance z and time t is considered.
According to Fick’s law, it is given by the equation

∂C(z, t)

∂ t
= ∂

∂z

(
D (C)

∂C(z, t)

∂z

)
, ξ(t) < z < ∞.

(1)
Note that the diffusion coefficient D is piecewise constant—
at the critical concentration Ccr the properties of the network
change and the coefficient D switches from D(1) to D(2). On
the interface �(t) between crystal and melt the following jump
condition holds:

∂ξ(t)

∂ t
= D (C)

∂C(ξ(t), t)

∂z
. (2)

Equation (2) is commonly referred to as the Stefan condition.
For the classical Stefan problem one sets a fixed concentration
on �(t), but for our application we take into account the
concentration transport from the melt into the crystalline phase.
Thus the second boundary condition on the interface �(t) is

D (C)
∂C(ξ(t), t)

∂z
= W

d0
(C(ξ(t), t) − Ce). (3)

Here W is a dimensionless constant, d0 is the intermolecular
distance and Ce is the equilibrium concentration at the
crystal/melt interface. We set K = W/d0. The initial
concentration is given by

C(z, 0) = Cin, Cin = C∞ (4)

and for z → ∞ we have

lim
z→∞ C(z, t) = C∞. (5)

The crystallization process starts at time t = 0, thus ξ(0) = 0.
Problem (1)–(5)  is a special case of  moving  boundary

problems. In this case the boundary of the domain �(t) is
not known in advance. Thus the solution of the system (1)–
(5) requires solution of the diffusion equations in an unknown
region, which has to be determined as a part of the solution.
There are very limited analytical solutions to moving boundary
problems. Therefore, the numerical solution of (1)–(5) is the
main tool in the study of these problems.

Various numerical methods are known to solve Stefan
type problems, e.g. front-fixing method, front-tracking method,
level-set method, phase field method. For a comparison
of several effective methods for the one-dimensional Stefan

problem see [14, 16]. We apply the boundary immobilization
method [14, 15]. In this method the domain of the melt phase
is transformed into a fixed one at the expense of solving a more
complicated equation (compare (1) and (6)). The benefit is that
only a little additional effort is required to treat the moving
boundary. Moreover, the new form of the equations is suited to
standard numerical procedures.

3. Description of the numerical algorithm

In this section we explain our numerical method. First, we
reformulate the problem using the transformation

x = z − ξ(t), c(x, t) = C(z, t).

Under this transformation, the domain of the melt phase is
mapped onto the fixed one {0 < x < ∞, 0 < t} with
unknown functions c and ξ . In the new coordinate system x, t
equations (1)–(3) take the form

∂c(x, t)

∂ t
= ∂

∂x

(
D(c)

∂c(x, t)

∂x

)
+ ∂ξ(t)

∂ t

∂c(x, t)

∂x
,

0 < x < ∞, (6)

D(c)
∂c(0, t)

∂x
= K (c(0, t) − Ce),

lim
x→∞ c(x, t) = C∞, (7)

∂ξ(t)

∂ t
= K (c(0, t) − Ce). (8)

Further, we fix a sufficiently large interval [0, x∞] and
introduce the non-uniform grid {xk}, k = 0, 1, . . . , N , x0 =
0, xN = x∞ on it with step-sizes hk = xk − xk−1. The grid
{xk} is concentrated at 0. The time grid {t j } is uniform with
step τ .

We define discrete approximations c(xk, t j ) to the
concentration at the point xk at time t j and approximations
ξ(t j) to the position of the front at the time moment t j . Suppose
that at the moment t j−1 the concentration c(xk, t j−1) and the
position ξ(t j−1) of the front are known. At the next time
t j = t j−1 + τ we have to compute the new position of the
front ξ(t j ) and the concentration c(xk, t j ).

The discretization of equations (6)–(8) using the central
difference for the convection term and a standard six-point
finite difference scheme with parameter σ ∈ [0, 1] (see for
example [17]) is in the form

c(xk, t j ) − c(xk, t j−1)

τ

= σ
2D(c(xk, t j ))

hk + hk+1

c(xk+1, t j ) − c(xk, t j )

hk+1

− σ
2D(c(xk, t j ))

hk + hk+1

c(xk, t j ) − c(xk−1, t j )

hk

+ (1 − σ)
2D(c(xk, t j−1))

hk + hk+1

c(xk+1, t j−1) − c(xk, t j−1)

hk+1

− (1 − σ)
2D(c(xk, t j−1))

hk + hk+1

c(xk, t j−1) − c(xk−1, t j−1)

hk

+ ξ(t j )−ξ(t j−1)

τ
σ

2

hk + hk+1

(
c(xk+1, t j ) − c(xk−1, t j )

)
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+ ξ(t j ) − ξ(t j−1)

τ
(1 − σ)

2

hk + hk+1
(c(xk+1, t j−1)

− c(xk−1, t j−1)), (9)

for k = 1, 2, . . . , N − 1 and

c(0, t j) − c(0, t j−1)

τ
= σ

2

h1

D(c(0, t j ))(c(x1, t j ) − c(0, t j))

h1

− σ
2

h1
K

(
1 − 0.5h1

ξ(t j ) − ξ(t j−1)

D(c(0, t j ))τ

) (
c(0, t j) − Ce

)

+ (1 − σ)
2

h1

D(c(0, t j ))(c(x1, t j−1) − c(0, t j−1))

h1

− (1 − σ)
2

h1
K

(
1 − 0.5h1

ξ(t j ) − ξ(t j−1)

D(c(0, t j ))τ

)

× (
c(0, t j−1) − Ce

)
, (10)

for k = 0.
Finally, we use the equation

ξ(t j ) − ξ(t j−1)

τ
= K

(
σc(0, t j) + (1 − σ)c(0, t j−1) − Ce

)
(11)

for the approximation of the front position at the next moment
of time.

Note that the accuracy of the numerical method is first
order in time and second order in space for σ �= 0.5. The
scheme with σ = 0.5 can be used to achieve second order
accuracy both in space and in time. In the case of explicit
discretization (σ = 0) the time step stability restriction

τ � min(hi)
2

4 max(D, K max hi )

is needed (see [17]). Implicit time discretization σ > 0 avoids
the time step stability restriction.

The additional step restrictions

τ � min(hi )
2

2D(1 − σ)
, h � 2D(c)

K (c(0, t j ) − Ce)

are sufficient for the positivity and the monotonicity of the
numerical solution.

Thus, we obtain a non-linear system of equations (9)–
(11) for c(xk, t j ) and ξ(t j ). This system is solved iteratively.
The initial value ξ 0(t j ) of ξ(t j) is obtained from (11) with
σ = 0. The iteration step is the computation of the
concentrations c(xk, t j), k = 0, 1, . . . , N , from equations (9)
and (10). Equation (11) with σ = 0.5 and the already evaluated
concentration c(0, t j ) gives the next iteration ξ 1(t j) of the front
position. Iterations continue until |ξm(t j) − ξm−1(t j )| < ε,
where ε is a given precision.

The resulting linear algebraic system (for σ �= 0) is
non-symmetric and tridiagonal. It is diagonally dominant
with positive diagonal entries and non-positive off-diagonal
elements. Therefore, we can apply fast linear solvers
to compute the concentrations—for example the Thomas
algorithm.

S

Figure 1. Crystal size.

4. Results and discussion

We consider equations (1)–(5) with the following physical
parameters:

D(1) = 1, D(2) = D(1)

a
,

where a = 10 or a = 100,

W = 0.5 or W = 0.1,

Cin = C∞ = 0.7, Ce = 0.3,

Ccr = 0.44.

(12)

For the numerical solution of equations (1)–(5) with physical
parameters (12) we use the above described algorithm with
parameter σ = 0.

Figure 1 shows the time dependence of the size of the
growing crystal. The solid line is for a = 100 and W = 0.5;
the dashed line is for a = 10 and W = 0.5; the dotted line
is for a = 100 and W = 0.1 and dash–dotted line is for
a = 10 and W = 0.1. A clear break in the growth rate is
seen. Initial fast growth switches to slower growth as soon as
the concentration at the interface drops below the critical value.
Two important peculiarities are seen. For W = 0.1 the initial
growth rate is about five times slower, as expected. The initial
mode of growth lasts longer because the concentration is not
consumed so fast and the diffusion supply keeps the interface
concentration sufficiently high for a longer time. Moreover, the
thickness of the rigid shell with C < Ccr remains thinner. At
the first site the final result is quite paradoxical: lowering the
W value causes an increase of the growth rate.

The time dependence of the size of the ‘rigid shell’, the
zone with lowered diffusion coefficient in the interface region,
is demonstrated in figure 2. The upper part of the same
figure illustrates the time dependence of the concentration at
the interface. The starting point is the moment when the
‘rigid shell’ is first formed. In order to see better the initial
stages, the time is shown in a log scale. The thickness n
increases stepwise. It is readily seen that it is correlated with
the concentration decrease at the interface.
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Figure 2. Size of the rigid shell and concentration at the interface.

Figure 3. Concentration profiles.

The ‘rigid shell’ grows faster if a = 10 in comparison to
a = 100. This is because diffusion supplies the ‘rigid shell’
from outside with network modifiers, i.e. the same material
that is consumed by the growing crystal. In the same time the
consumption is slower for a = 100.

Figure 3 demonstrates the concentration profiles at
different times. The initial stage is a straight line, C = Cin.
The time is indicated on each curve. As soon as the growth
begins a diffusion zone is formed.

The concentration at the interface, i.e. x = 0, drops very
fast, long before a steady state is approached. In the particular

case in figure 2, the concentration at the interface is below the
critical point of C = Ccr even for t = 100, though for the time
t = 10 000 it is far from steady state conditions.

5. Conclusions

A ‘rigid’ shell is formed near the interface of the growing
crystal. The reason is the exhaustion of concentration of
modifying components in this region. This is in agreement
with data of [18], who find experimentally about a 30 nm rigid
region in the vicinity of the newly formed crystals.

As a result of the formation of the ‘rigid’ shell the mode
of growth changes and the crystals almost stop growing.
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